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Set Logics and Their Representations 
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We examine a set logic by means of all its representations as a concrete logic 
together with the automorphism groups of the representations. The most 
important are the minimal representations, i.e., the ones defined by minimal full 
collections of two-valued states. From this point of view we also investigate 
some Greechie diagrams. 

1. DEFINITION AND BASIC PROPERTIES OF THE 
REPRESENTATIONS 

Let E be an orthomodular poset (OMP) (Gudder, 1979; Kalmbach, 
1983). Then E is referred to as a set logic provided S2(E) is full, S2(E) 
being the set of  all two-valued finitely additive states on E. A subset S of 
S2(E) is said to be full if x ,y~E,  s(x) < s(y)(s~S) =~ x <-y. A concrete 
logic (Sherstnev, 1968) is a couple (/~, X) where X is a set and /~ is a 
collection of  subsets of  X satisfying: 

1. X ~ .  
2. A s ~  =~ X \ A  eB. 
3. A , B ~ f f ~ , A n B = ~ J  =. AwB~ff~. 

Proposition 1.1. (Gudder, 1979; Ptak and Pulmannova, 1991). An 
OMP E is isomorphic to a concrete logic iff E is a set logic. 

We call every concrete logic isomorphic to E a representation for E. A 
representation (E, X) is called separating (Navara and Tkadlec, 1991) if 
Vx, y E X ( x  v~y) 3A ~ff~ (x~A and yeA).  It is clear that (/~, X) is separating 
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iff the mapping x ~ fix from X to $2(/~) defined by 

6x(A) = {10 if x t A  
if x~A 

is injective. States of  the form fix are referred to as point states. For 
example, if S ~ S2(E) is full, then we can obtain a separating representa- 
tion for E if we put X = S and J~ = {~[etE}, where Y = {s~Sls(e) = 1}. 
Conversely, if (/~, X) is a separating representation for E, then Sp(E) is full, 
Sp(ff~) being the set of  all point states. 

A representation (/~, X) is said to be minimal providing Sp(E) is a 
minimal (under inclusion) full collection of two-valued states. Obviously 
(/~, X) is minimal iff Vx t X 3A, B e E  ( A n  B = {x }). A trivial representation 
for E is a representation/~ satisfying Sp(/~) = S2(E). 

The representations (/~, X) and (F, Y) are called spatially isomorphic if 
there exists a bijection f :  X ~ Y such that f and f -  1 are measurable, i.e., 
VAt  ff~ VB t ff [ f(A) t ff and f -  I(B) e/~]. 

Let A(E) be the set of all atoms in E, E being an OMP. Then E is said 
to be atomistic if V e t E  [e = ~/  { a t A ( E ) l a  <-- e}]. 

Proposition 1.2. (Gudder, 1979; Ptak and Pulmannova, t991). An 
atomistic OMP E is isomorphic to a concrete logic iff Va, b tA(E) 
[a~_b ~ 3stS2(E); s(a) =s(b)  = 1]. 

Let Aut E denote the automorphism group of  E. If  E is a set logic and 
(/~, X) is its representation, then Aut E and Aut/~ are isomorphic. An 
automorphism h t A u t  E is said to be carried by a point mapping providing 
there exists f :  X ~ X  with h(A) = f - l ( A )  (A t/~). A representation (/~, X) is 
called A-regular if every h t A u t / ~  is carried by a point mapping. It results 
from Navara and Tkadlec (1991) that the following statement is valid. 

Proposition 1.3. A representation/~ is A-regular iff Sp(ff~) is invariant 
under Aut/~. 

Definition 1.4. A UR-logic is a set logic which has only one represen- 
tation (up to a spatial isomorphism). A UMR-logic is a set logic all of  
whose minimal representations are spatially isomorphic. We call a set logic 
E A-regular if its every minimal representation is A-regular. We call E 
A-singular in case the trivial representation for E alone is A-regular. 

Let us give examples of  UR-logics. Suppose k, m tN ,  k ->- 2 m -> 3, and 
X is a set with card X = kin. Then X(km, k) = {A c Xlcard A is a multiple 
of k} is a UR-logic (Sultanbekov, 1991). 

A representation (/~, X) is called regular if every finitely additive signed 
measure on E can be extended to a finitely additive signed measure on the 
algebra [say, a(E)] bf  subsets of  X generated by s Let us denote by V(E) 
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the vector space of all finitely additive signed measures on /~. A polar 
(Ovchinnikov, 1991) o f / ~  is defined by ~ o =  {#eV(a(ffO)lveff,(#A =0)}.  
The following theorem turns out to be very helpful. 

Theorem 1.5 (Ovchinnikov, 1991). Let E be a finite set logic. A 
representation (/~, X) is regular iff dim j~0 + dim V(/~) <- card A(a(ff~)). 

Proof. Observe that a(/~) can be obtained f rom/~ by two extensions: 

and 

Since E is finite, it follows that a(/~) is also finite. It is easy to prove 
that any finite algebra of  subsets of  X can be generated by a finite parti- 
tion of  X. Suppose X = U (xil  i = 1 , . . . ,  n}, xic2_ x j -  ~ ( i  ~ j ) ,  X,. 
~ ( i =  1 , . . . , n ) ,  and { X 1 , . . . , X n  generates a(E). Then A(a(E))= 
{X~ . . . . .  Xn }. Since every # E V(a(ffO) is defined by its values on the atoms, 
we get dim V(a(ffO)= n. Consider a linear mapping L: V(a(ff~))~ V(ff 0 
defined by L(p) = #If. Obviously Ker L =/~0. Clearly /~ is regular (i.e., 
Im L = V(/~)] iff dim Im L > dim V(/~). The latter is valid iff 

dim V(/~) + dim/~0 _< dim Im L + dim Ker L = dim V(a(ffO) = n 

Remark 1.6. As is obvious from the above proof, in Theorem 1.5, we 
may replace the inequality by the equality. 

The regularity (A-regularity) of  representations is invariant under 
spatial isomorphisms. At the same time, in general it is not invariant under 
arbitrary isomorphisms. That stimulates us to give the following defini- 
tions. 

Definition I. 7. A set logic E is called absolutely regular if its every 
representation is regular. It is called singular provided its every representa- 
tion is not regular. 

Clearly E is absolutely regular iff its every minimal representation is 
regular and is singular if its trivial representation is not regular. 

2. MINIMAL REGULAR REPRESENTATIONS FOR SOME 
GREECHIE DIAGRAMS 

Denote by E n (n > 4) the OMP whose Greechie diagram (Greechie, 
1971; Gudder, 1979) is an n-polygon [in Kalmbach (1983) it is called a 
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loop] which has three atoms on each edge. We suppose the polygon to be 
proper. Let us denote by P0, PI . . . . .  I~ 1 the vertices of the n-polygon. 
Denote by Q; the middle atom between P; and Pi+ 1. By Ln we denote the 
OMP whose Greechie diagram can be obtained from E~ by deleting Q~_ l- 
These atomistic OMPs satisfy the requirements of Proposition 1.2 and thus 
are set logics. We denote by Ext S(E)  the set of all extreme points of  
S(E) ,  S (E)  being the set of  all states on E. Next, In = card S2(L~) and 
e, = card S2(E,). 

Remark  2.1. A state on En or L,  is obviously defined by its values on 
Po, P1, - �9 �9 Pn-  1- For  two-valued states we will list the vertices evaluated 
to 1 alone. 

Theorem 2.2. (1) The generators of  AutEn are t and qo, where 
t ( e i )  = ei+ 1, t(Qi) = Qi+ 1 (a translation), qo(Pi) = P - i ,  and qo(Qg) = Q - i  
(a symmetry). The generators of A u t L ,  are q and r, where q(Pg)= 
P,  - i -  1, q(Q~) = Q, - ~- 1, r transposes Po and Q0 and leaves invariant the 
other atoms (all indices are modulo n). 

(2) Ext S ( L , )  = S2(L,) ,  Ext S(Ezk ) = S2(E2k), and Ext S(E2k + 1) = 

S2(EEk + l) u {e}, where e(Pi)  = 0.5 (i = 0 , . . . ,  2k). 
(3) I, and e, form Fibonacci sequences with Ii = 2, 12 = 3, e 1 = 1, and 

e2= 3. 
Moreover, 

Proof. (1) Since any automorphism is obviously defined by its values 
on vertices and neighboring vertices are carried to neighboring ones, the 
assertion for Aut E,  follows. As to Aut L, ,  it suffices to notice that 
PI, P2, �9 �9 �9 P , -  2 have to be evaluated to P1, P2 . . . . .  Pn-  2 or 
P,  - 2, Pn - 3 . . . . .  P1 and the action of Aut L,  on {Po, Qo, Pn - 1, Q, - 2 } is 
transitive. 

(2) It was proved in Ovchinnikov (1985) that Ext S(E2k)=S2(E2k) 
and e ~Ext S(Ezk +1)- The rest is straightforward. 

(3) There is a natural bijective correspondence between elements of  
S2(En) and subsets of {Po, P 1 , . . . ,  P~-1} containing no neighbors. The 
assertion follows from Aigner (1979) and Vorobjov (1978). 

Theorem 2.3. (1) If n >-7, then E, admits a nonregular, minimal, and 
A-regular representation. The OMPs E4, E5 and E6 are absolutely regular. 

(2) The set logic L 6 is A-singular. 
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Proof. (1) Denote by X the set of all elements of  S2(E,) that equal 1 
on two vertices alone. Let us show X to be suitable, i.e., P =  
{ f f t [ l = 0 , . . . , n  - 1}w{0,t l  = 0  . . . . .  n - 1}, where /~ = {s~Xls(Pt)  = 1} 
and QI = {s ~ x l s ( a , )  = 1} is the required representation. The set X can be 
separated into orbits, Xk, k = 2, 3 . . . . .  [n/2], under Aut En, and Xk consists 
of  all elements of  X whose central angle between the vertices evaluated to 
1 equals 2ztk/n. Obviously card Xk = n (k = 2, 3 . . . .  , [n/2]) for an odd n 
and card Xk = n (k = 2, 3 . . . . .  n/2 - 1) and card X,/2 = n/2 for an even n. 
Since all ff~n/~,, ( [ l -s  I > 1) are singletons, it follows that E is minimal. 
Let us verify that Qt n Qm ~ ~ .  The required s ~ Q t n  Qm can be con- 
structed as follows. Suppose the diameter orthogonal to the chord between 
Qt and Q,, meets E,  in the atom R opposite the chord. Then s~X2 whose 
central angle covers R is suitable. Final ly , /~ c~ Qm ~ ~ (I / - m l  > 1): take 
a ~ X  2 with s ( P t ) =  1 whose central angle does not cover Qm. Then 
s ~ P I ( ' 3 O m .  

Obviously X is invariant under Aut E,.  Hence by Proposition 1.3, J~ is 
A -regular. 

Every vertex P~ contains two states from each Xk provided n is odd. In 
case n is even/~t contains two states from Xk (k = 2 . . . .  , n/2 - 1) and one 
state from X,/2. Suppose/~ is regular. Then every signed measure # on /~  is 
defined by a suitable f :  X ~ R as follows: 

~(A) = Y. f(x) (A e~) 
x EA  

Consider the state # on E, defined by/~(Pt) = 0 (l = 0 , . . . ,  1). Then 

n - - I  

O= ~ # ( P t ) = 2  Z f ( x ) + 2  ~ f ( x ) + . . . + 2  ~ f ( x )  
l = 0 x ~ X  2 x ~ X  3 x~X[n/2] 

= 2 ~ f ( x )  = 2#(X) = 2 
x ~ X  

This is a contradiction. 
Let us now show E6 to be absolutely regular. Define two-valued states 

ao, do, bo, Co, and e by a o ( P l ) = a o ( P s ) = l ,  d o ( P o ) = d o ( P 3 ) = l ,  
bo(Po) = 1, co(Po) = co(P2) = co(P4) = 1, and e(Pt) = 0 (l =- 0 . . . . .  5). Let 
a~, dr, bz, and et (l = 1 , . . . ,  5) be products of ao, do, bo, and co with t-~, t 
being the automorphism from Theorem 2.2. Then a =  {ao, a ~ , . . . ,  as}, 
b = {bo, b~ . . . . .  bs}, d = {do, dl, d2}, c = {co, c~}, and {e} exhaust all the 
orbits in $2(E6) under AutE6.  For  each couple (/,m), put P ( l ,m)=  
{s~S2(E6Is(Pt) = s(em) = 1}, Q(l, m) = {sES2(E6)Is(QI) = S(Qm) = 1} and 
13~O(l, m) = {s~S2(E6) l s (ez )  = S(Om) = 1}. Obviously X c $2(E6) is full iff 

X c3 P(l, m) ~ ~ ,  X c~ Q(I, m) ~ (~, X c3 P~Q(I, m) ~ 
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for all suitable l, m. Making use of this criterion let us describe up to a 
spatial isomorphism all minimal representations for E6. Since 
tiff, I + 3 ) =  {dl}, it follows that every representation contains d. For 
brevity we write a024 instead of {ao, a2, a4}. Then full sets of two-valued 
states for the minimal representations are the following: 

(i) a w d w  {e}, duao24ub024 L) {Co}. 
(ii) b u c u d  
(iii) a w d u b024, a01234 L) d u b04 u (Co, e}, b01234 k.3 d L3 a04 • c 

( iv)  a u d u b 0 1 3 4 ,  a o l a 3 u d u b o 3 4 5 u c ,  a o 1 3 4 u d u b o 1 3 4 u c ,  ao1234LJ 

d k..) bo134 k-) (Co). 
Thus only two of ten minimal representations are A-regular. They are 

a u d u {e } and b u d w c. It is straightforward that all the aforementioned 
ten representations are regular. 

(2) We have $2(L6)= $2(E6)L){fo,fl,f2}, where fo equals 1 in ver- 
tices Po, P3, and Ps, f l  in P0 and Ps, and f2 in P0, P2, and Ps. By the table 
of products of two-valued states with generators of Aut t 6 ,  we obtain all 
orbits in $2(L6) under Aut L6: 

a 1 4 u b 2 3 u d o 2 L ) f o 2 ;  bos u {e,f~ }; a05 L3 hi4; a23 t.-) col, {dl} 

Next, if(l ,  3) = {a2, c~ }, if(l ,  4) = {d~ }, P~Q(1, 3) = {ao, bl }, P~(2, 3) = 
{al,  d2, f2} ,  and 0(1, 3)=bosw{e,  f l } .  Therefore, if ( L  X ) i s  an arbitrary 
representation, then X has a nonempty intersection with each orbit listed 
above. Thus, if P is in addition A-regular, then X contains all these orbits. 
Hence X = $2(L6) and/~  is trivial. The theorem follows. 

Theorem 2.4. There exists a minimal, A-regular and regular representa- 
tion (/~, X) for E, with card X = 2n, 1 < 2 -< 2 + 1/n. Moreover, there exists 
a numeration of elements of the orbits in X under Aut P such that the 
generators of Aut/~ are carried by the point mappings xi ~-->X;+l and 
Xi b--~ X _  i . 

Proof .  According to Proposition 1.3, X needs to he a union of orbits. 

Case 1. E2k+ 1 (k >- 4); 2 = 2 + 1/(2k + 1). Let ao be the two-valued 
state with a o ( P t ) = l  for i = 0 , 2 , 4  . . . . .  2 k - 2 ,  and bo be the one for 
i = 0, 2, 4 . . . . .  2k - 4. Put aj = ao" t - j  and bj = bo" t - j  ( j  = 1 . . . . .  2k). 
Since ao and bo are symmetric with respect to certain diameters, it follows 
that a = {ao . . . . .  a2k } and b = {bo . . . . .  b2k } are orbits. In what follows 
indices for aj and bj are taken modulo 2k + 1. Let c denote the state 
evaluating any vertex to 0. Put X = a u b u { c } .  Then we get card X =  
4k +3 .  

Define T: X ~ X by Taj = aj + 1, Tbj = bj + 1, and Tc = c. Consider a 
concrete logic/~ on Xwith P0 = a035..- 2k - 1 u b057... 2k - 1, Qo = b234 k..) {a2, e}, 
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ft. = T"(ffo), and Q. = T'(Qo) (n = 1 , . . . ,  2k) as atoms. To  prove E to be 
a representat ion for E2k+~ it suffices to verify that  O 0 n Q .  # ~  
( n = l , . . . , Z k ) ,  P 0 n f f , # Z  ( n = 2  . . . .  , 2 k - l ) ,  and f f o c ~ Q . #  
(n = 1 . . . . .  2k - 1). 

We have P,, = a n , 3  + . . . . . .  2k  --  1 + n L.) b n ,  5 + . . . . . .  2k-- I +."  If  n ~ {2 . . . . .  

2 k - - l }  is even, then a3+.r If  n is odd,  then a . ~ P n P . .  We have 
Q.=bL+. ,3+n,4+nU{a2+. ,c} .  If  n~{1,  Z , . . . , Z k - l }  is odd,  then 
a2+.~Poc~Q..  I f  n is even, then b3+,,~PonO... Finally, c ~ Q o n Q ,  for  
arbi t rary  n. 

The  minimali ty o f  the representat ion follows from /50n/~ 3 = {a3}, 
Poc~ 02 = {bs}, and O0("~ 03 = (C}. 

Let  us prove the representat ion to be regular. Since the representat ion 
is minimal, it follows that  a(/~) consists o f  all the subsets of  X. Therefore,  
by Theorem 1.5, it suffices to show that  

dim/~o <__ card X - dim V(E) = 4k + 3 - (2k + 2) = 2k + 1 

Every # ~ V(a(ff~)) is defined by ~ = #(aj), flj = #(b]), and ~ = #(c). By the 
definition o f  a polar,  we have 

2k 2k 

E E =0 
j = o  j = o  

and 

and 

(1) 

e j + e 3 + j  +" " ' + ~ 2 k - ~ + j + / ~ j + f l j + 5 + "  " " + f l 2 k - l + j  = 0  

( j  = 0 , . . . ,  9_k) (2) 

a j + f l j + f l i + , + f l j + 2 + 7 = O  ( j = O  . . . . .  2k) (3) 

Summing the equat ions (2), we obtain k ~ j a j + ( k -  1 ) ~ ] B j  = 0 .  By 
(1), y = - ( 1 / k ) ~ f l j .  Therefore,  (3) implies y, aj~lin{flo . . . . .  fl2k} 
( j  = 0 . . . . .  2k). Thus we get dim ~o _< dim lin{flo . . . . .  fl2k } -< 2k + 1. 

Case 2. E2k (k > 5); 2 = 3/2. Put  A,~ = {k > 5lk ~ 0 (mod(4m - 1)) 
and k = 0 ( m o d ( 4 r -  1)), VreN,  r < m -  1}. Then  {A,.Im~N } is a parti- 
t ion o f  {klk~N and k-> 5}. Observe that  if k ~ 6, then 

Vrn ~N (k ~A m ~ k > 4m + 1) (*) 

Let  ao be a two-valued state defined by a o (Pi)  = 1 (i = 0, 2, 4 . . . . .  2m - 2, 
2m + 1,2m + 3, 2m + 5 , . . . ,  2k - (2m + 1), 2k - (2m - 2 ) ,  2 k - 2 m  . . . . .  
2k - 4, 2k - 2). Let  do be a two-valued state with do(Po) = do(Pk) = 1. As 
in Case 1, making use of  t, we get two orbits of  Aut  E2k : a = ao12...2k_ t a n d  
d = do~2 ..~_ 1; for  ai (di) the indices are taken modulo  2k (k). Put  X = a u d .  



2184 Sultanbekov 

Then card X = 3k. Let T: X--+ X be defined by Tai = a; + 1 and Tdi = d; + 1. 
Put  

P o  = ao2""2m--  2, 2m + l,. . . ,2k -- 2m - - 1 , 2 k - -  2m + 2, . . . ,2k--  2 k') { d o }  

and 

O 0 ~ a2m,2k  -- 2m + 1 k.J d23. . ,  k _ 1 

Pt and 0 l  are defined as above.  
Let  us demons t ra te  that  Q0 n Q, n d ~ ~ .  Since card 0;  n d = k - 2 

(i > 0), it follows tha t  {2, 3 . . . . .  k - 1} n {2 + l, 3 + l, . . . .  k - 1 + l} = 
implies card{2, 3 , . . . , k -  1 } w { 2 + / ,  3 + / , . . . , k -  1 + l } = 2 k - 4 > k + l .  
Thus  there exist n~{2,  3 . . . . .  k -  1} and p e { 2 + / ,  3 + / ,  . . . .  k - 1 + l }  
satisfying n = p  ( rood k). 

Let  us now show that  Po n 0 t  ~ ~ (l = 1 , . . . ,  2k - 2). We have 

O l ~ a 2 m + l , 2 k - - 2 m +  1 +lk-)dz+t,3+t,..., k - l + t "  

Obviously  if l # k - 1  and l ~ k ,  then there exists p ~ { 2 + l ,  3+I,  . . . .  
k - 1 + / }  such that  p = 0  ( m o d  k) and therefore do~/~on Or. I f  l = k  - 1 
or  l = k, then by  (*), we get (2m + k - 1, k - 2m} n {2rn + 1, 2m + 3 . . . . .  
2 k - 2 m -  1} ~ and {2m + k , k - 2 m  + 1 } n { 2 m  + 1 ,2m + 3 . . . .  , 
2k - 2m - 1 } r ~ .  Therefore,  P o n  0z n a ~ ~3. In  the case k = 6 and 
m = 2 the p r o o f  is s t ra ightforward.  

Consider  

P ,  = al,2 + l,...,2m 2 +  ; , 2 m +  , + / , . . . , 2 k - - 2 m - - 1  + , ,2k - -  2m + 2 + l , . . . ,2k-- 2 + l g { d r }  

(2 < l < 2 k - 2 )  

I f  le{3 ,  5 , . . . ,  2m + 1}, t h e n  &('~F~al.2+l.....2m_2+ l ~k ~ .  I f  le{2m + 3, 
2m + 5 . . . . .  2k - 3}, then f fon  ff~ n a 2 k -  2m + 2 +l,...,2k-- 2 +t r ~ .  S u p p o s e / i s  
even. If  re{2, 4 . . . . .  2m -- 2}, then a , ~ / ~ / ~ .  If  t e{2m,  2m + 2 , . . . ,  
4rn - -4},  t h e n  a2k_2m+2+l~ffO~ff l. I f  l = 4m - - 2  or l = 4m, then we have 
a2m +1 + / ~  & ~ ~ [use (*)]. Finally, if  l e {4m + 2, 4m + 4 , . . . ,  2k - 2}, then 
a2k - 2m - 1 + t ~ fro n / ~ l -  I f  k = 6 and m = 2, then the i n e q u a l i t y / ~  n P, :~ 
is s t ra ightforward.  

The  representat ion is minimal  since / ~ o n 0 2 = { d o }  and / ~ o n 0 k =  
{ak-2m+ 1} or / ~ n 0 k  = {agm+k }. 

Let us show the representat ion to be regular. Put  ~; = / , ( a ; )  and a; =/~ 
(d/). Fo r  ~; (5;) the indices are considered modu lo  2k (k). By the definition 
o f  a polar  we obta in  

2 k - -  1 k - - 1  

Z ~J+ Z 5j=O (4) 
j = O  j = O  
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" j  + ~2  + j  + " " " + ~2rn -- 2 + j  + " 2 m  + 1 + j  + " " " + " 2 k  -- 2m -- 1 + j  

+ " ' + . 2 k _ 2 + j + 6 j = O  ( j = 0  . . . . .  2 k - l )  (5) 

" 2 m + j + " 2 k _ 2 m + l + j + 6 2 + j + ' ' ' + O k _ l + j = O  (j~---0 . . . .  , 2 k - -  1) 

(6) 

I f  we sum equat ions (5), then we obtain (k - 1) ~ j  , j  + 2 ~ j  6] = 0. By (4), 
this gives ~ j  aj = ~ j  6j = 0. Therefore,  the system (6) gets the form 

t 
"O + "Am 1 = 32rn 1 + 62m 

"1. �9 .+ O~Am = 62m + 6 2 r n +  1 (6') 

[ , a 2 k - 1  + "am-2  = 62m+2 + 62m-l 

Since k eAm and thus k ~ 0 ( m o d ( 4 m -  1)), it follows that  if we take 
equat ions o f  (6') with numbers  0, 4 - 1, 8m - 2 , . . .  (we consider the addi- 
t ion modulo  2k), then we obtain all the equat ions o f  (6'). Therefore,  we get 
, j  = ( - 1)Jao+gj ( j =  1, 2 , . . . ,  2 k -  1) with gjelin[6o, 6 ~ , . . . ,  6~_~]; then 
the first equat ion in (5) implies m , o - [ k - l - ( 2 m -  1)] ,o+ 
(m - 1),o + 6o + ~ gl = 0 and hence (k + 1 - 4m),o = 6o + ~, gl" Thus 
for a l l j  = 0 . . . . .  2k - 1 we have , j ~ l i n { 6 o , . . . ,  6k_ t}. Since ~ : o  ~ 6j = 0, 
we get 

dim/~o _< dim 1in {6o, �9 �9 �9 6k _ ~ } < k - 1 = 3 k - (2k + 1) = card X -  dim V(J~). 

Case 3. E ,  (n = 4, 5, 6, 7, 8). Fo r  E4 or E5 the required representat ion 
is obviously unique. We have already examined E6 in Theorem 2.3. For  E7 
the required representat ion is given by the two-valued states ao and bo, where 
ao(Pi) = 1 (i = O, 2, 5) and bo(Po)= 1. Finally, for  E8 it suffices to take 
ao(Pj) = 1 ( j  = 0, 3, 5), do (&)  = do(P4) = 1, and c(Pj) = 0 ( j  = 0 . . . . .  7). 
The  values for  2 and card X are given in Table  I. 

The  theorem follows. 

Remark 2.5. For  E6k+3 (k -> 1) we can also take 2 = 1 + 4 / ( 6 k  + 3 ) .  
Consider  the two-valued states defined by ao(Pi)= 1 (i = 0 , 2 , 4 , . . . ,  
6k - 2), bo(P~) = 1 (i =- 0(mod  3)), and c(Pe) = 0 (i = 0 . . . . .  6k + 2). 

Table I. 

n card X 2 

4 7 1.75 
5 10 2 
6 10 1~ 
7 14 2 
8 13 1.625 
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